
miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin 
and cancer metastasis

Li Ma1,2, Jennifer Young1,7, Harsha Prabhala3,7, Elizabeth Pan1, Pieter Mestdagh4, Daniel 
Muth5, Julie Teruya-Feldstein6, Ferenc Reinhardt1, Tamer T. Onder1,2, Scott Valastyan1,2, 
Frank Westermann5, Frank Speleman4, Jo Vandesompele4, and Robert A. Weinberg1,2,8

1 Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts 
Institute of Technology, Cambridge, MA 02142, USA

2 MIT Ludwig Center for Molecular Oncology, Cambridge, MA 02142, USA

3 Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA

4 Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium

5 Department of Tumor Genetics, German Cancer Center, Im Neuenheimer Feld 280, Heidelberg, 
Germany

6 Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA

Abstract

MicroRNAs (miRNAs) are increasingly implicated in regulating the malignant progression of 

cancer. Here we show that miR-9, the level of which is upregulated in breast cancer cells, directly 

targets CDH1, the E-cadherin-encoding mRNA, leading to increased cell motility and 

invasiveness. miR-9-mediated E-cadherin downregulation results in the activation of β-catenin 

signaling, which contributes to upregulated expression of the gene encoding vascular endothelial 

growth factor (VEGF); this leads, in turn, to increased tumor angiogenesis. Overexpression of 

miR-9 in otherwise-non-metastatic breast tumor cells enables these cells to form pulmonary 

micrometastases in mice. Conversely, inhibiting miR-9 using a ‘miRNA sponge’ in highly 

malignant cells inhibits metastasis formation. Expression of miR-9 is activated by MYC and 

MYCN, both of which directly bind to the mir-9-3 locus. Significantly, in human cancers, miR-9 

levels correlate with MYCN amplification, tumor grade, and metastatic status. These findings 

uncover a regulatory and signaling pathway involving a metastasis-promoting miRNA that is 

predicted to directly target expression of the key metastasis-suppressing protein E-cadherin.
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Metastases are responsible for >90% of cancer-related mortality. These secondary growths 

arise as products of a multi-step process that begins when caner cells within primary tumors 

break away from neighboring cells and invade through the basement membrane1. This initial 

step of local invasion may frequently be triggered by contextual signals that carcinoma cells 

receive from the nearby stroma, causing them to undergo an epithelial-mesenchymal 

transition (EMT), a multi-faceted transdifferentiation program that enables tumor cells to 

acquire malignancy-associated phenotypes2. Subsequently, metastasizing cells can enter the 

circulation, doing so either directly or via lymphatics. Size constraints in the 

microvasculature cause many of these cells to be arrested at distant tissue sites, where they 

may extravasate and enter the foreign tissue parenchyma. At this point, they may remain 

dormant or, with low efficiency, proliferate from occult micrometastases to form 

angiogenic, clinically detectable metastases. The absence of EMT-inducing signals in the 

microenvironment of distant tissues may cause such disseminated cells to revert to an 

epithelial phenotype via a mesenchymal-epithelial transition (MET). Much research has 

been focused on identifying the critical regulators of the metastatic process; these regulatory 

molecules include both proteins and microRNAs (miRNAs)3,4.

MiRNAs are small non-coding RNA molecules that suppress gene expression by interacting 

with the 3′ untranslated regions (UTRs) of target mRNAs. These interactions may result in 

either inhibition of translation of the targeted mRNAs or their degradation5. In an initial 

real-time RT-PCR-based screen for differentially expressed miRNAs, we identified three 

miRNAs that are most significantly upregulated in human breast cancer cell lines – 

miR-155, miR-9, and miR-10b6. The subsequent functional studies of miR-10b validated its 

candidacy as a mechanistically important miRNA in cancer progression, as demonstrated by 

experiments showing that overexpression of miR-10b in otherwise-non-metastatic breast 

tumors initiated tumor invasion and distant metastasis in xenograft models6. Subsequently, 

several other miRNAs, including miR-373, miR-520c, miR-335, miR-206, miR-126, 

miR-21, and miR-31, have also been identified as either promoters or suppressors of 

metastasis7–11. In addition, the miR-200 family, whose role in regulating metastasis remains 

unclear, has emerged as a silencer of ZEB1 and ZEB2, two established EMT-inducing and 

metastasis-promoting transcription factors12,13, thereby representing yet another set of 

regulators of the EMT program.

A second miRNA that stood out in our initial screen is miR-96, a miRNA that is selectively 

expressed in neural tissues under normal conditions14 and regulates their development15. 

Expression of this miRNA is higher in brain tumors than in tumors of other histological 

types, further demonstrating a tissue-specific expression pattern16. In the context of clinical 

breast cancer, miR-9 has been found to be upregulated in primary tumors relative to its 

expression in normal mammary tissues17. Interestingly, miR-9 was recently shown to be 

upregulated by 1,000-fold in c-myc-induced mouse mammary tumors18.

In a preliminary survey, we used several computational algorithms, including the two most 

widely tested programs, TargetScan19 and PicTar20, to search for miRNAs that target 

evolutionarily conserved sequences present in the CDH1 mRNA; this survey revealed that 

miR-9 was the only known miRNA that was predicted to target the CDH1 mRNA (Fig. 1a). 
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CDH1 encodes the epithelial cell adhesion molecule E-cadherin, a trans-membrane 

glycoprotein that forms the core of the adherens junctions between adjacent epithelial 

cells21. The cytoplasmic tail of E-cadherin associates with a number of intracellular proteins 

that link E-cadherin to the actin cytoskeleton21. Given its well-established function in 

maintaining adherens junctions, E-cadherin inactivation presumably promotes metastasis by 

enabling the first step of the metastatic cascade – the dissociation of carcinoma cells from 

one another. In addition, its loss liberates β–catenin molecules that may move into the 

nucleus and activate pro-metastatic genes22. The significance of E-cadherin inactivation for 

metastasis has been demonstrated in a variety of in vitro and in vivo models22–27. Recently, 

we have found that E-cadherin loss in certain cell types can also trigger an EMT and a wide 

range of transcriptional and signaling changes that contribute to metastatic dissemination27. 

Thus, miR-9’s potential role as a suppressor of E-cadherin expression made this miRNA a 

strong candidate for promoting the acquisition of malignant phenotypes by carcinoma cells.

RESULTS

Effect of miR-9 on the expression of E-cadherin

To determine whether miR-9 can indeed downregulate E-cadherin expression, we stably 

expressed miR-9 and, as a control, miR-10b, in two epithelial cell lines (Supplementary 

Information, Fig. S1). Ectopic expression of miR-9, but not miR-10b, led to an EMT-like 

conversion in HMLE non-transformed, immortalized human mammary epithelial cells28: 

these cells became scattered and assumed a spindle-like or star-like morphology (Fig. 1b) 

and displayed a 70% reduction in E-cadherin and a 5-fold increase in the mesenchymal 

marker vimentin (Fig. 1c). In contrast, in SUM149 human breast carcinoma cells29, miR-9 

downregulated E-cadherin expression by ~50% but failed to induce vimentin, other 

mesenchymal markers, and a fibroblastic cell morphology (Fig. 1c, and data not shown). 

These differences in response were intrinsic to the two cell lines rather than a consequence 

of different degrees of E-cadherin suppression, because knockdown of E-cadherin by >90% 

using small-interfering RNA (siRNA) in both cell lines caused an EMT in HMLE cells27 but 

not in SUM149 cells (T.T.O. and R.A.W., unpublished observations). Hence, while miR-9 

succeeds in suppressing E-cadherin expression in two epithelial cell lines, it only induces an 

EMT in one of them.

To determine whether miR-9 directly targets the CDH1 mRNA, we performed reporter 

assays and found that miR-9 reduced the activity of a luciferase reporter that was fused to 

the wild-type 3′ UTR of the CDH1 mRNA but not to a mutant 3′UTR (Fig. 1d); the latter 

carried altered nucleotides that were introduced in the miR-9 ‘seed-pairing’19 recognition 

site (Fig. 1a). Hence, the observed downregulation of E-cadherin by miR-9 depends directly 

on a single cognate recognition site in the CDH1 3′UTR.

Inactivation of E-cadherin has been shown to promote cell migration and invasion in the 

presence or absence of an EMT27. Consistent with this, we found that ectopic expression of 

miR-9 led to a 3- to 5-fold increase in the motility and invasiveness of both HMLE and 

SUM149 cells in vitro (Fig. 1e, f). In order to determine whether these effects depend 

specifically on E-cadherin suppression, we employed an expression construct that encodes 

the entire E-cadherin coding sequence but lacks the 3′ UTR, yielding an mRNA that is 
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resistant to miRNA-mediated suppression. Ectopic expression of E-cadherin with this 

construct reduced migration and invasion in the miR-9-overexpressing cells, but not in the 

control cells, which have a low basal level of miR-9 (Fig. 1e, f). This suggests that following 

miR-9 overexpression, a resulting reduction in E-cadherin is required in order for cells to 

exhibit increased motility and invasiveness. However, we cannot exclude the possibility that 

miR-9-mediated suppression of other targets is also required for the observed effects of this 

miRNA on cell phenotypes.

Regulation of β-catenin signaling and VEGF expression by miR-9

Having validated E-cadherin as a miR-9 target, we next sought to determine whether miR-9-

mediated E-cadherin suppression would affect intracellular signaling. Binding of Wnt 

ligands to their receptors results in the stabilization of β-catenin, allowing it to enter the cell 

nucleus, interact with the TCF/LEF family of transcription factors, and promote the 

transcription of genes 30. Independent of this, E-cadherin binds and sequesters a large pool 

of β-catenin at the cytoplasmic membrane, thereby preventing its nuclear translocation and 

its function as a component of the TCF/LEF transcription factor complex22,31,32. Our 

previous work demonstrated that knockdown of E-cadherin in the experimentally 

transformed human mammary epithelial cells caused relocalization of β-catenin from 

adherens junctions to the cytoplasm and nucleus. Of note, this suppression of E-cadherin 

expression also led to a reduction of β-catenin phosphorylation by GSK-3β through 

unknown regulatory mechanisms, thereby enabling the liberated β-catenin to escape 

proteasome-mediated degradation27.

In the present work, we found that miR-9-expressing SUM149 cells exhibited both 

cytoplasmic and nuclear localization of β-catenin, whereas in the control SUM149 cells this 

protein was predominantly associated with cell-cell junctions, presumably with the 

cytoplasmic tails of E-cadherin molecules (Fig. 2a). Moreover, the β-catenin in miR-9-

expressing cells showed a reduced level of GSK-3β-dependent inhibitory phosphorylation 

(Fig. 2b) and was therefore present in a more active functional state27,30.

To provide the definitive proof of β-catenin functional activation, we performed β-catenin 

reporter assays using both the Topflash construct with multiple TCF/LEF-binding sites in 

the promoter of a firefly luciferase reporter gene and the derived Fopflash construct with 

mutated TCF/LEF binding sites33. These assays demonstrated that miR-9 increased β-

catenin activity by >10-fold in E-cadherin-positive cells (HMLE and SUM149) but not in E-

cadherin-negative human breast cancer cells (SUM159) (Fig. 2c). Of note, the basal β-

catenin activity was far higher in SUM159 cells than in HMLE and SUM149 cells (Fig. 2c), 

which provided further indication of the inverse correlation between E-cadherin expression 

and β-catenin activity.

Because E-cadherin inactivation has recently been shown to promote tumor angiogenesis in 

genetically engineered mouse models22,26, and because the pro-angiogenic factor VEGFA 

has been described as a transcriptional target gene of β-catenin22,34, we used the SUM149 

and SUM159 breast cancer cell lines, described above and in further detail in Supplementary 

Information, Fig. S2, to determine whether miR-9 would increase the levels of VEGFA. We 

found that upon miR-9 overexpression, the VEGFA mRNA levels increased by 3- to 4-fold 
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in the SUM149 cells but not in the SUM159 cells (Fig. 2d). In addition, miR-9 also 

suppressed E-cadherin expression and induced VEGFA expression by 3-fold in MCF7-RAS 

breast carcinoma cells (Supplementary Information, Fig. S3). Thus, the ability of miR-9 to 

upregulate VEGFA is correlated with its ability to modulate E-cadherin expression.

We undertook to determine whether the ability of miR-9 to upregulate VEGFA mRNA 

depended on its ability to downregulate E-cadherin expression and activate β-catenin-

mediated transcription. We discovered that expression of either an E-cadherin siRNA or a 

constitutively active β-catenin (the ΔN90 non-degradable mutant27, Fig. 2e) in parental 

SUM149 cells was not sufficient to phenocopy the observed induction of VEGFA mRNA 

expression by miR-9; however, ectopic expression of either an E-cadherin mRNA (without 

3′UTR) or a β-catenin siRNA (Fig. 2e) in miR-9-expressing SUM149 cells was indeed able 

to reverse the ability of miR-9 to induce VEGFA mRNA (Fig. 2f). These data indicate that 

E-cadherin downregulation and β-catenin activation are necessary but not sufficient for 

mediating miR-9-dependent VEGF upregulation. Stated differently, E-cadherin is a critical 

target of miR-9, but other functionally important miR-9 targets remain to be identified.

We next implanted miR-9-expressing or mock-infected SUM149 cells into orthotopic sites – 

the mammary fat pads of non-obese diabetic/severe combined immunodeficient (NOD/

SCID) mice. At 12 weeks post implantation, we found an approximately 4-fold increase in 

the plasma level of human-specific VEGF in mice bearing miR-9-expressing SUM149 

tumors compared to mice implanted with mock-infected SUM149 cells (Fig. 2g), which was 

accompanied by a 1.5-fold increase in primary tumor weight (Fig. 2h). We then normalized 

the VEGF level to the primary tumor weight for individual recipients and found that the 

normalized VEGF levels were still significantly higher in the miR-9 group (Fig. 2i), 

indicating that miR-9-expressing tumor cells do indeed secrete more VEGF in vivo. Finally, 

we found in a control experiment that miR-10b, which did not reduce E-cadherin expression 

in SUM149 cells (Fig. 1c), could not upregulate VEGF levels in these cells (Supplementary 

Information, Fig. S4).

Effects of miR-9 on tumor angiogenesis, mesenchymal traits, and the formation of 
micrometastases

SUM149 cells forced to express miR-9 grew more slowly in vitro than the corresponding 

control cells (Supplementary Information, Fig. S5); in contrast, in vivo the miR-9-expressing 

SUM149 tumors displayed an approximately 2-fold increase in the levels of the Ki-67 cell 

proliferation marker compared with those having basal levels of miR-9 expression (Fig. 3a). 

Hence, the observed increase in primary tumor size appeared to reflect a cell-non-

autonomous effect of this miRNA, such as its ability to enhance tumor-associated 

angiogenesis. To address this possibility, we performed immunohistochemistry to detect 

expression of the MECA-32 mouse endothelial cell antigen, which should serve as a specific 

marker of angiogenesis. Consistent with previous observations6, the control SUM149 

tumors displayed only low levels of staining. In stark contrast, miR-9-expressing SUM149 

tumors exhibited a >10-fold increase in the density of intratumoral microvessels (Fig. 3b), 

which is in consonance with the observed higher levels of VEGF secreted by these tumor 

cells.
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In fact, an even more robust vessel formation was observed at the outer edges of these 

miR-9-expressing tumors than in the intratumoral regions (Supplementary Information, Fig. 

S6a). Of additional interest, some of the cells within the lumina of vessels at the tumor edge 

were nucleated and were positive for cytokeratin expression, providing evidence for miR-9-

induced intravasation of carcinoma cells (Supplementary Information, Fig. S6a, b). 

Although the great majority of carcinoma cells within the miR-9-expressing and control 

tumors exhibited similar morphology (Fig. 3a, b), the carcinoma cells located near vessels at 

the tumor edge (Supplementary Information, Fig. S6a) were cytologically different from the 

bulk populations of carcinoma cells (Fig. 3a, b) in the miR-9-overexpressing tumors. We 

reasoned that these cytologically distinctive cells were either stromal cells of host origin or, 

alternatively, carcinoma cells undergoing an EMT in vivo.

To distinguish between these possibilities, we performed immunostaining with antibodies 

reactive with E-cadherin and human vimentin. As expected, the miR-9-expressing human 

tumor xenografts had weaker E-cadherin staining than control tumors (data not shown). 

More strikingly, a significant number of carcinoma cells at the edges of the miR-9-

expressing tumors exhibited strong human vimentin staining, while intratumoral regions 

only displayed occasional human vimentin-positive cells (Fig. 3c). The control tumors, 

which expressed lower levels of miR-9, were essentially vimentin-negative (Fig. 3c). 

Moreover, as anticipated, mouse fibroblasts in the tumor stroma were completely negative 

for human vimentin (Fig. 3c), demonstrating that the observed vimentin-positive cells did 

indeed derive from implanted human carcinoma cells. Because miR-9-induced vimentin 

expression in cultured HMLE cells but not in SUM149 cells (Fig. 1c), we propose that this 

miRNA can induce an EMT in a cell type- and context-dependent manner, and that in 

certain cell types, such as SUM149 carcinoma cells, miR-9 sensitizes cells to EMT-inducing 

signals emanating from the tumor microenvironment rather than eliciting an EMT on its 

own.

SUM149 cells have been reported to exhibit little, if any, metastatic ability6,35. Indeed, we 

observed that mouse hosts bearing control SUM149 primary tumors were essentially free of 

lung micrometastases except for one mouse, which showed a single micrometastatic cluster 

that was immunostained by the AE1/AE3 anti-cytokeratin antibodies at 12 weeks after 

cancer cell implantation (Fig. 3d). In stark contrast, the lungs of mice implanted in the 

mammary fat pads with miR-9-overexpressing SUM149 cells exhibited clusters of dense 

hyperchromatic cells that were positive for cytokeratins, as demonstrated by both 

histological examination (Fig. 3e) and AE1/AE3 immunostaining (Fig. 3f). On average, we 

found ~14 micrometastases per 5-μm section (Fig. 3d). This provided direct evidence that 

miR-9 operates as a pro-metastatic miRNA.

Effects of miR-9 silencing on metastasis

We also wished to determine whether miR-9 expression is required for metastasis formation 

by cancer cells that are naturally highly malignant. To address this, we used ‘miRNA 

sponges’11,36 to stably knock down miR-9 in the highly metastatic 4T1 mouse mammary 

tumor cells that naturally express a very high level of miR-9 (data not shown). A ‘miRNA 

sponge’ is a construct encoding an mRNA (e.g., the gfp mRNA) that contains in its 3′UTR 

Ma et al. Page 6

Nat Cell Biol. Author manuscript; available in PMC 2010 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



multiple tandem binding sites for a miRNA of interest36. We assessed the level of functional 

knockdown of miR-9 by a reporter assay, in which the predicted miR-9 binding site was 

introduced into the 3′UTR of a luciferase reporter gene6, and found that infection of 4T1 

cells with the miR-9 sponge caused a >2-fold increase in luciferase activity compared with 

the control sponge (Fig. 4a); this suggested that a greater than 50% inhibition of the actions 

of miR-9 had been achieved by the miR-9 sponge. We then implanted the infected 4T1 cells 

into the mammary fat fads of syngeneic immunocompetent Balb/c mice. Four weeks later, 

mice were moribund due to primary tumor burdens in both groups, and no difference in 

primary tumor size was observed between the 4T1 tumors expressing a control sponge and 

those expressing the miR-9 sponge (Fig. 4b). Examination of lungs revealed an average of 

35 visible metastases in mice implanted with 4T1 cells expressing the control sponge (Fig. 

4c, d); in contrast, an approximately 50% reduction in lung metastases (average: 17 visible 

metastases per mouse) was observed in mice bearing 4T1 tumors expressing the miR-9 

sponge (Fig. 4c–e). Thus, inhibition of miR-9 can suppress metastasis formation by 

otherwise-highly malignant cancer cells.

Activation of miR-9 expression by MYC/MYCN

We undertook to determine how miR-9 expression is regulated. Consistent with our previous 

findings6, immortalized, non-transformed HMLE cells naturally expressed a low level of 

miR-9, whereas the breast cancer cell lines examined expressed higher levels of this miRNA 

(Fig. 5a). Interestingly, a correlation between RAS status and miR-9 levels was observed in 

various cell lines; for instance, both the MCF7-RAS human breast cancer cells, which 

express an introduced, activated RAS oncoprotein (H-RASV12)37, and the MDA-MB-231 

human breast cancer cells, which contain an activating K-RAS, codon 12 mutation38, showed 

significantly higher miR-9 levels than did the HMLE and MCF7 cells, both of which lack an 

activated RAS oncogene38 (Fig. 5a). Of note, relative to miRNA expression in normal 

mammary tissues, miR-9 stood out as the most significantly upregulated miRNA in 

mammary tumors arising in the MMTV-c-myc transgenic mice18. We found this to be 

particularly interesting, because RAS can potentiate MYC activity to promote tumor 

angiogenesis39. Moreover, oncogenic RAS is capable of inducing VEGF expression40.

Responding to these various observations, we were particularly interested in the actions of 

MYC, because this transcription factor has been shown to directly regulate expression of a 

diverse set of miRNAs (e.g., the oncogenic miR-17-92 miRNA cluster) that contribute in 

one way or another to tumorigenesis41–43. For this reason, we ectopically expressed MYC in 

HMLE cells and found that a 4-fold increase in MYC expression level resulted in an 

approximately 3-fold increase in the level of mature miR-9 (Fig. 5b). miR-9 can be 

generated by the processing of any of three primary transcripts encoded by three distinct 

genes. Among the three encoding genes, the transcription of mir-9-3 is upregulated most 

strongly (3.9-fold, Fig. 5b) by the MYC transcription factor.

Another MYC gene family member, N-MYC (MYCN), is frequently amplified in 

neuroblastomas. Operating as transcription factors, MYC and MYCN share a common set of 

target genes and are, from this perspective, functionally interchangeable. To evaluate 

whether MYCN can also upregulate miR-9, we measured its expression in a MYCN-
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inducible model system, SHEP-MYCN-ER42. Upon 4-hydroxy-tamoxifen (4-OHT)-

mediated activation of the MYCN-ER fusion protein, miR-9 expression level was increased 

by 4-fold, which was comparable to the increase in the expression of the miR-17-92 positive 

control, whose expression is known to be activated by MYCN through direct promoter 

binding44 (Fig. 5c).

To determine whether MYC and MYCN regulate the expression of miR-9 by binding 

directly to the corresponding genomic sequences, we performed genome-wide ChIP-on-chip 

experiments using the Kelly and SJ-NB-12 neuroblastoma cells, which express high levels 

of endogenous MYCN and MYC, respectively, due in both cases to gene amplification. We 

observed that the endogenously expressed MYCN and MYC proteins bound directly to a 

conserved CpG island region encompassing canonical MYC binding sites (CACGTG) in the 

mir-9-3 locus; this was observed in both the Kelly and SJ-NB-12 neuroblastoma cells (Fig. 

5d).

The association of chromatin-bound MYC with H3K4Me3 (a mark of activated chromatin) 

at MYC-regulated genes has been described previously45. Indeed, we found that MYC 

binding at the mir-9-3 locus was associated with elevated H3K4me3 binding 

(Supplementary Information, Fig. S7). Although we also observed a peak for MYC binding 

at mir-9-1 and mir-9-2 loci, respectively, these two regions exhibited low occupancy by 

H3K4me3 and relatively high occupancy by H3K27me3 (a mark of repressed chromatin, 

data not shown). Hence, among the three miR-9-encoding genes, the transcription of mir-9-3 

is the most responsive to transcriptional activation by MYC/MYCN.

Recently, others have identified candidate transcriptional start sites (TSSs) and promoters of 

the great majority of human and mouse miRNA genes46. They exploited yet other findings 

that histone H3 is trimethylated at lysine 4 (H3K4me3) at the TSSs and promoters of most 

genes (>90%) in the genome. This study identified position 87712233 of chromosome 15 as 

the putative human mir-9-3 TSS46. In the present study, we observed co-occupancy by 

H3K4me3 and MYC of this putative mir-9-3 TSS region (close to position 87712000; 

Supplementary Information, Fig. S7), as well as of a region upstream of this putative 

mir-9-3 TSS (near position 87708500, where a canonical E-box is located; Supplementary 

Information, Fig. S7). Hence, the regions in which we observed MYC binding appear to 

encompass the mir-9-3 TSS and promoter, providing further evidence of transcriptional 

regulation of the mir-9-3 gene by MYC.

Correlation of miR-9 with MYCN amplification, tumor grade, and metastatic status in 
human cancers

To extend our analysis to clinical cancers, we measured the expression of miR-9 in a cohort 

of 45 neuroblastoma tumor samples. Twenty-two tumors exhibited normal MYCN copy 

number and were classified as Stage 1 (n = 10), Stage 2 (n = 6) or Stage 3 (n = 6) 

neuroblastomas. Twenty-three tumors were classified as Stage 4 neuroblastomas and these 

showed MYCN gene amplification. Compared to tumors with normal MYCN copy number, 

tumors that exhibited an amplification of the MYCN gene showed a 2.5-fold upregulation of 

miR-9 expression (p = 9 × 10−4, Fig. 6a). The observed increase of miR-9 expression was 

similar to that of the miRNAs belonging to the miR-17-92 cluster (average miR-17-92 fold 
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increase = 2.6, Supplementary Information, Fig. S8), which was previously shown to be 

upregulated in MYC/MYCN-overexpressing tumors42,47.

We also examined miR-9 levels in clinical breast cancers. Consistent with our expression 

analyses of cultured cell lines, miR-9 levels were significantly elevated in primary breast 

tumors from patients with diagnosed metastases compared to those from metastasis-free 

patients (fold increase = 4.33, p = 0.007, Fig. 6b).

DISCUSSION

Model for miR-9-mediated pathway in cancer metastasis

Our findings identify miR-9 as a pro-metastatic miRNA and a negative regulator of the key 

metastasis suppressor, E-cadherin. On the basis of our results, we propose that the MYC and 

MYCN oncoproteins, acting on the mir-9-3 locus, cause activation of miR-9 expression in 

tumor cells. The resulting miR-9 miRNA can suppress the expression of E-cadherin, 

resulting in the promotion of carcinoma cell motility and invasiveness and, in addition, 

causing the activation of β-catenin signaling; the latter, in turn, contributes to elevated 

expression of VEGFA, leading to induction of tumor-associated angiogenesis. Ultimately, 

both increased cell motility and invasiveness, as well as enhanced angiogenesis, can 

contribute to metastasis formation (Fig. 6c). Since E-cadherin downregulation and β-catenin 

activation appear to be necessary but not sufficient for mediating miR-9-dependent VEGF 

upregulation (Fig. 2f), yet other miR-9 targets must also operate to enable VEGF induction 

by this miRNA (Fig. 6c). Indeed, the E-cadherin-independent roles of miR-9 in tumor cells 

warrant further investigation.

Paradoxically, a recent study proposed that miR-9 might be a candidate metastasis-

suppressing miRNA, based on the observation that miR-9-encoding gene promoters, as well 

as the promoters of genes encoding two other miRNAs (miR-34b/c and miR-148a), were 

methylated in a relatively large fraction of primary tumors present in patients with lymph 

node metastases; in contrast, only a small fraction of primary tumors from patients without 

lymph node metastases exhibited this promoter methylation, while the status of distant 

metastases of these tumors was not determined48. Importantly, because the miR-9 

expression levels in these tumors were not determined, it remains unclear whether there was 

a correlation between miR-9 gene methylation status and miR-9 miRNA levels. 

Furthermore, when ectopically expressed in several highly malignant cells, miR-34b/c and 

miR-148a suppressed metastasis formation, while miR-9 did not48.

Yet other lines of evidence indicate that miR-9 is positively associated with malignancy of 

human cancers. Some have demonstrated that miR-9 expression is significantly upregulated 

in both clinical breast cancers17 and in c-myc-induced mouse mammary tumors18. We have 

found that miR-9 is upregulated in various breast cancer cell lines compared with non-

transformed mammary epithelial cell lines, and that metastatic breast cancer cells express 

even higher miR-9 levels than non-metastatic tumor cells. miR-9 is also upregulated in 

metastatic breast tumors compared to non-metastatic breast tumors from patients (Fig. 6b). 

These results suggest that methylation of the promoters of miR-9 genes reported in the cited 

study48 does not indicate a wider role of this miRNA in inhibiting metastasis.
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miR-9 expression and EMT

In contrast to miR-10b, which is specifically upregulated in metastatic cancer cells6, miR-9 

expression is upregulated in both metastatic and non-metastatic tumor cells relative to non-

transformed cells. These observations, together with the fact that miR-9 expression can be 

increased by the actions of MYC and MYCN oncoproteins, cause us to propose that miR-9 

expression is often induced at earlier stages of multi-step tumor progression when elevated 

MYC and MYCN expression is already apparent49 but before tumors become actively 

invasive and metastatic.

Can miR-9, acting on its own, initiate the EMT program? In the SUM149 carcinoma cells, 

the partial reduction of E-cadherin levels mediated by this miRNA does not directly induce 

an EMT in vitro (Fig. 1c and data not shown); instead, it seems to sensitize these tumor cells 

to EMT-inducing signals arising from the tumor microenvironment. This leads to the 

acquisition by carcinoma cells of mesenchymal traits late in tumor progression (Fig. 3c), 

which could in turn contribute to metastatic dissemination.

A contrasting response was observed in HMLE cells, in which we did indeed observe an 

EMT-like conversion resulting from overexpression of miR-9 (Fig. 1b, c). One possibility is 

that miR-9 might induce an EMT in a cell type-dependent and context-dependent manner; 

for example, HMLE cells have undergone functional inactivation of both p53 and Rb, which 

might prime these cells for induction of an EMT. Alternatively, the apparent ability of 

miR-9 to induce an EMT in HMLE cells might be explained by selection for a pre-existing 

rare mesenchymal subpopulation present within this particular cell line50. Unlike the HMLE 

cell line, the SUM149 cell line used in this study does not contain a detectable mesenchymal 

subpopulation, based on the absence of detectable levels of the mesenchymal marker 

vimentin (Figure 1c) and on FACS profiles (data not shown). For this reason, the selection 

mechanism, if it ever occurs, applies to HMLE cells but not to SUM149 cells, and the 

conclusions drawn from SUM149 experiments are unaffected.

Inactivation of the key metastasis suppressor E-cadherin can occur via a variety of distinct 

mechanisms, such as promoter hypermethylation and the actions of various EMT-inducing 

transcription factors. Our findings identify an additional mechanism for downregulating E-

cadherin and indicate that elevated expression of the miR-9 miRNA contributes to EMT and 

metastasis in some and possibly many human tumors.

METHODS

Methods and any associated references are available in the online version of the paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. miR-9 directly targets CDH1 and increases cell motility and invasiveness
(a) Left panel: predicted duplex formation between human CDH1 3′UTR and miR-9. Right 

panel: sequence of the miR-9 binding site within the CDH1 3′UTR of human (hs), mouse 

(mm), and rat (rn).

(b) Phase contrast images of HMLE cells infected with the miR-9-expressing, miR-10b-

expressing, or empty vector. Cells were plated on 10 cm dishes at the same density (1 × 106 

cells in 10 ml medium). Two days after plating, images were taken and cells were then 

counted (cell numbers are shown in parentheses). Magnification: x200.

(c) Immunoblotting of E-cadherin and vimentin in HMLE and SUM149 cells infected with 

the miR-9-expressing, miR-10b-expressing, or empty vector.

(d) Luciferase activity of the wild-type or mutant CDH1 3′UTR reporter gene in SUM149 

cells infected with the miR-9-expressing or empty vector.

(e, f) Transwell migration assay and Matrigel invasion assay of miR-9-transduced or mock-

infected HMLE (e) and SUM149 (f) cells with or without ectopic expression of E-cadherin. 

A representative experiment is shown in triplicate along with s.e.m. in d–f.
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Figure 2. miR-9 increases VEGF levels in an E-cadherin- and β-catenin-dependent manner
(a) Immunofluorescence staining of β-catenin (red) in mock-infected or miR-9-expressing 

SUM149 cells demonstrates differential localization. Right panels are the overlay of β-

catenin and nuclear 4′,6-diamidino-2-phenylindole (DAPI; blue) staining of the same field. 

White arrows indicate cells positive for nuclear β-catenin. Insets: blow-up images of 

particular cells. Magnification: x200.

(b) Immunoblotting of phospho-β-catenin (Ser33/37/Thr41, GSK-3β phosphorylation sites) 

and β-catenin in SUM149 cells infected with the miR-9-expressing or empty vector.

(c) Topflash reporter assay in HMLE, SUM149, and SUM159 cells infected with the miR-9-

expressing or empty vector.

(d) Real-time RT-PCR of total VEGFA mRNA in SUM149 and SUM159 cells infected with 

the miR-9-expressing or empty vector.

(e) Immunoblotting of E-cadherin and β-catenin in SUM149 cells infected with E-cadherin 

siRNA (si-Ecad) or ΔN90β-catenin (ΔN90), and in SUM149-miR-9 cells infected with E-

cadherin (Ecad) or β-catenin siRNA (si-βcat). Vec: the pLKO-puro vector with a scrambled 

sequence that does not target any mRNA.
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(f) Real-time RT-PCR of total VEGFA mRNA in the same cells described in e. A 

representative experiment is shown in triplicate along with s.e.m. in c, d and f.
(g–i) Plasma levels of VEGF (g), primary tumor weight (h), and normalized VEGF levels (i) 
in mice that received orthotopic injection of miR-9-transduced or mock-infected SUM149 

cells, at week 12 after transplantation. Data are presented as mean ± s.e.m. (n = 8 mice per 

group).
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Figure 3. miR-9 induces angiogenesis, mesenchymal marker expression, and metastasis of the 
SUM149 epithelial tumors
(a, b) Left panels: Ki-67- (a) and MECA-32-stained sections (b) of primary mammary 

tumors formed by mock-infected or miR-9-transduced SUM149 cells, at week 12 after 

orthotopic transplantation. The circle and arrow indicate pyknotic nuclei. Magnification: 

x200 for Ki-67; x400 for MECA-32. Right panels: counting of Ki-67-positive cells (a) and 

intratumoral vessels (the number of microvessels per field, b). Data are presented as mean ± 

s.e.m. (we counted three fields per section and analyzed four mice per group).

(c) Human-specific vimentin staining of primary mammary tumors formed by mock-

infected or miR-9-transduced SUM149 cells, at week 12 after orthotopic transplantation. 

Both intratumoral regions (center) and tumor-stroma interfaces (edge) are shown. 

Magnification: x200. n = 3 mice per group were analyzed for vimentin.
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(d) Numbers of lung micrometastases per section in individual mice that received orthotopic 

injection of miR-9-transduced or mock-infected SUM149 cells, at week 12 after 

transplantation. Data are presented as mean ± s.e.m. (each data point represents a different 

mouse; n = 5 mice per group).

(e, f) H&E- (e) and AE1/AE3 (a cocktail of two distinct anti-cytokeratin monoclonal 

antibodies, f)-stained sections of lungs isolated from mice that received orthotopic injection 

of miR-9-transduced or mock-infected SUM149 cells, at week 12 after transplantation. 

Circles indicate clusters of micrometastatic cells. Arrows indicate normal bronchial 

epithelium. Magnification: x200 in left columns; x600 in right columns.
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Figure 4. Inhibiting miR-9 suppresses metastasis
(a) Enhanced activity of miR-9-regulated reporter by infection of 4T1 cells with the miR-9 

sponge. A representative experiment is shown in triplicate along with s.e.m.

(b) Primary tumor weight in Balb/c mice that received orthotopic injection of 4T1 cells 

infected with the miR-9 sponge or control sponge, at 4 weeks after transplantation.

(c) Bright field imaging and H&E staining of lungs isolated from mice that received 

orthotopic injection of 4T1 cells infected with the miR-9 sponge or control sponge, at 4 

weeks after transplantation. Arrows indicate metastatic nodules. Magnification: x8 for bright 

field imaging; x40 for H&E staining.

(d, e) Numbers of visible lung metastases (d) and metastasis index (= number of metastases/

primary tumor weight, e) in mice that received orthotopic injection of 4T1 cells infected 

with the miR-9 or control sponge, at 4 weeks after transplantation. Data in b, d and e are 

presented as mean ± s.e.m. (n = 8 mice per group).

Ma et al. Page 19

Nat Cell Biol. Author manuscript; available in PMC 2010 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. miR-9 expression is activated by MYC/MYCN
(a) Real-time RT-PCR of miR-9 in HMLE, MCF7, MCF7-RAS, and MDA-MB-231 cells.

(b) Real-time RT-PCR of MYC, mature miR-9, mir-9-1, mir-9-2, and mir-9-3 in mock-

infected or MYC-transduced HMLE cells.

(c) Mature miRNA expression in SH-EP-MYCN-ER cells upon MYCN induction with 4-

OHT, 48 h after treatment. MiRNA expression values were rescaled relative to the control 

(no 4-OHT). The miR-17-92 expression value represents the expression of miR-20a, a 

miRNA residing within the miR-17-92 cluster representative for miR-17-92 expression. 

Data in a–c are presented as mean ± s.e.m. of triplate samples.

(d) ChIP-on-chip data showing occupancy of the mir-9-3 genomic sequence by MYCN and 

MYC in Kelly (MYCN-amplified) and SJ-NB-12 (MYC-amplified) neuroblastoma cells, 

respectively. The genomic positions for probes and their enrichment ratios are displayed on 

the X and Y axes, respectively. Smoothed local enrichment ratios are given for either 

MYCN or MYC at the mir-9-3 locus in Kelly and SJ-NB-12 cells. The red line indicates 

median enrichment ratio for MYCN or MYC versus input as calculated of all probes for 

chromosome 15.
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Figure 6. miR-9 levels correlate with MYCN amplification and metastatic status in human 
cancers
(a) Expression of mature miR-9 in MYCN-normal copy (n = 22) and MYCN-amplified (n = 

23) neuroblastoma tumor samples.

(b) Expression of mature miR-9 in primary breast tumor samples from metastasis-free and 

metastasis-positive patients. Data in a and b are presented as mean ± s.e.m.

(c) Model for miR-9-mediated pathway in cancer metastasis.
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